Evidence that hydrogen sulfide exerts antinociceptive effects in the gastrointestinal tract by activating KATP channels.
نویسندگان
چکیده
Hydrogen sulfide (H(2)S) functions as a neuromodulator, but whether it modulates visceral perception and pain is unknown. Cystathionine beta-synthase (CBS) and cystathionine-gamma-lyase (CSE) mediate enzymatic generation of H(2)S in mammalian cells. Here we have investigated the role of H(2)S in modulating nociception to colorectal distension, a model that mimics some features of the irritable bowel syndrome. Four graded (0.4-1.6 ml of water) colorectal distensions (CRDs) were produced in conscious rats (healthy and postcolitic), and rectal nociception was assessed by measuring the behavioral response during CRD. Healthy rats were administered with sodium hydrogen sulfide (NaHS) (as a source of H(2)S), L-cysteine, or vehicle. In a second model, we investigated nociception to CRD in rats recovering from a chemically induced acute colitis. We found that CBS and CSE are expressed in the colon and spinal cord. Treating rats with NaHS resulted in a dose-dependent attenuation of CRD-induced nociception with the maximal effect at 60 micromol/kg (p < 0.05). Administration of L-cysteine, a CSE/CBS substrate, reduced rectal sensitivity to CRD (p < 0.05). NaHS-induced antinociception was reversed by glibenclamide, a ATP-sensitive K(+) (K(ATP)) channel inhibitor, and N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME), a nitric-oxide (NO) synthase inhibitor. The antinociceptive effect of NaHS was maintained during the resolution of colon inflammation induced by intrarectal administration of a chemical irritant. In summary, these data show that H(2)S inhibits nociception induced by CRD in both healthy and postcolitic rats. This effect is mediated by K(ATP) channels and NO. H(2)S-releasing drugs might be beneficial in treating painful intestinal disorders.
منابع مشابه
Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats
Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...
متن کاملTitle Page ATB-429, a hydrogen sulfide-releasing derivative of mesalamine, exerts anti-nociceptive effects in a model of post-inflammatory hypersensitivity
Hydrogen sulfide (H2S) functions as a neuromodulator and exerts anti-inflammatory activities. Recent data indicate that irritable bowel syndrome (IBS) is linked to inflammation of the gastrointestinal tract. In this study we have investigated the role of a novel H2Sreleasing derivative of mesalamine (ATB-429) in modulating nociception to colorectal distension (CRD), a model that mimics some fea...
متن کاملRole of L-arginine/NO/cGMP/KATP channel signaling pathway in the central and peripheral antinociceptive effect of thymoquinone in rats
Objective(s): Growing evidence demonstrates that L-arginine/NO/cGMP/KATP channel pathway has a modulatory role in pain perception. Previous studies have shown that thymoquinone exerts antinociceptive effects; however, the mechanisms underlying antinociception induced by thymoquinone have not been fully clarified. The aim of the present study was to evaluate the role of L-arginine/NO/cGMP/KATP c...
متن کاملHydrogen sulphide induces μ opioid receptor-dependent analgesia in a rodent model of visceral pain
BACKGROUND Hydrogen sulphide (H2S) is a gaseous neuro-mediator that exerts analgesic effects in rodent models of visceral pain by activating KATP channels. A body of evidence support the notion that KATP channels interact with endogenous opioids. Whether H2S-induced analgesia involves opioid receptors is unknown. METHODS The perception of painful sensation induced by colorectal distension (CR...
متن کاملNOSH-aspirin (NBS-1120), a dual nitric oxide and hydrogen sulfide-releasing hybrid, reduces inflammatory pain
The development of nitric oxide (NO)- and hydrogen sulfide (H2S)-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) has generated more potent anti-inflammatory drugs with increased safety profiles. A new hybrid molecule incorporating both NO and H2S donors into aspirin (NOSH-aspirin) was recently developed. In the present study, the antinociceptive activity of this novel molecule was compa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 316 1 شماره
صفحات -
تاریخ انتشار 2006